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1. Introduction

A large number of speculative theoretical ideas suggest the existence of new scalar fields,

as reviewed in [1 – 3]. A sufficiently light scalar will produce a new macroscopic force. Such

forces may lead to violations of the equivalence principle (EP) and the inverse square law

(ISL). For recent discussions of experimental searches for violation of the EP see ref. [4 – 8],

while recent reviews of searches for ISL violation may be found in [4, 9, 3].

Recently, Khoury and Weltman [10] and Gubser and Khoury [11] have shown that

inclusion of non quadratic terms in the potential for a scalar field can greatly alter the

experimental constraints on its coupling and mass. In particular, the range and effective

strength of such a “chameleon” force can drastically depend on the environment. Such

effects have been previously explored in theories of time varying alpha [12 – 14]. Several

subsequent works explored such terms in quintessence dark energy models [15 – 19]. In

this paper, we further explore the experimental implications of the chameleon effect. We
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consider the constraints on the couplings to ordinary matter of a nearly massless chameleon

field with WEP preserving couplings. Our results are dramatic: we find that the inclusion

of an extremely tiny quartic coupling constant for the scalar field, as small as 10−53,

weakens the constraints on the allowed coupling of the field to ordinary matter. We find

allowed parameter regions for new forces which have not been discovered previously. Similar

conclusions would apply to EP constraints, although we do not do a numerical analysis of

those constraints here.

2. The model

We consider a real scalar field theory governed by the Lagrangian density

−L =
1

2
(∂φ)2 + V (φ). (2.1)

We interpret V (φ) as the renormalized effective potential. We will consider the (time-

independent) solutions of the equations of motion from this Lagrangian. Our analysis uses

classical field theory, which is valid for a weakly coupled quantum theory. We also assume

that φ has been suitably shifted by a constant so φ = 0 is a global minimum of V , and

that V is analytic in the vicinity of φ = 0, which is equivalent to assuming that there is no

degree of freedom which becomes massless at φ = 0.

If we expand V about φ = 0, the term linear in φ must vanish by minimization of

V . Furthermore, we assume the minimum should be a global minimum, so that we do not

have to consider whether the coupling to matter could trigger formation of a catastrophic

bubble causing tunneling to the true vacuum. Therefore, the size of the coefficient of the

cubic term is bounded in terms of the coefficients of the quartic and higher order terms. For

arbitrarily weak fields produced by coupling φ to small source terms it suffices to consider

only the quadratic term. Macroscopic sources produce larger field strengths for which the

cubic and higher order terms also become important. We will stop our expansion at quartic

order. Because we have assumed φ = 0 is a global minimum of the potential, for a vacuum

potential of the form

V =
1

2
m2φ2 +

µ

3
φ3 +

ε

4
φ4 (2.2)

the coefficient of the cubic term satisfies

|µ| ≤ 3
√

m2ε/2 . (2.3)

The contribution of the cubic term is then larger than that of the quadratic term only for

field strengths large enough so that the quartic term is of at least comparable size. Thus

when computing the effects of the force due to φ, provided the quadratic and quartic terms

are included, neglecting the cubic terms will lead to errors that are of most of order one.

We assume φ couples to the fields of the standard model. Inside most ordinary forms

of macroscopic matter the expectation value of any scalar operator involving the standard

model gluon, quark or electron fields is approximately proportional to the mass density.

To estimate at leading order the modification of the constraints on a scalar field due to

the inclusion of nonquadratic terms in the potential it therefore suffices to consider the
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effective potential

V (φ) ≡ 1

2
m2φ2 +

ε

4
φ4 − βφρ, (2.4)

where ρ is the mass density of matter. The equation of motion for φ is then

∂2φ = m2φ + εφ3 − βρ =
dV

dφ
. (2.5)

In the limit ε → 0 we recover the Yukawa theory which is generally the form assumed for

new forces. However in general for a scalar field there is no principle requiring that ε = 0.

In fact, a nonzero ε is required to renormalize the theory.

It follows from the Lagrangian density (2.1) that a test mass m′ would experience a

fifth force
~Fφ = −βm′~∇φ. (2.6)

Experimental tests of the gravitational inverse square law generally put constraints on

the parameters α and λ of an additional Yukawa term

~F = GNm1m2
~∇αe−r/λ

r
. (2.7)

These parameters are related to those of eq. (2.5) by

m = 1/λ , β =
√

4πGNα (2.8)

in the case ε = 0.

A Yukawa force falls off exponentially fast at distances larger than λ ≡ 1/m. The εφ3

in the equation of motion will cause φ to fall even faster, at least as fast as a Yukawa field

with a mass of meff =
√

m2 + εφ2. Following ref. [10], we refer to φ as a chameleon field

because the associated force has an effective range and strength that varies according to

the distribution of matter. In the next sections we show that the constraints on m and β

are generally weakened by nonzero ε, and present both analytic estimates and numerical

computations of the effect.

3. Analytical approximations

3.1 Inside a large object: ‘thin shell’ approximation

The effective range of the force between test bodies is set by the inverse square root of the

curvature of the potential. The chameleon potential is higher order than quadratic, and

so the curvature of the potential about a nonzero field value may be much larger than it is

about zero. When the range becomes shorter than the size of the object sourcing the field,

then only a “thin shell” of the object [10] of thickness equal to the effective range of the

force acts as a source for the field.

For sufficiently large ε, we may use a thin-shell approximation to find the value of φ

inside a large object whose density varies slowly relative to the effective range of the force.

As a result, φ inside the object varies slowly and remains always near the value φmax that
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maximizes

−V (φ) = −1

2
m2φ2 − ε

4
φ4 + βφρ. (3.1)

One condition required for this this approximation to be valid is:

meff ≡
√

V ′′|φmax
=

√

m2 + 3εφ2
max >

1

`
(3.2)

where ` is the scale over which the source density varies

1/` ≡ ρ′

ρ
.

Note ` < R, the radius of the source. The left hand side of (3.2) is an effective mass for the

φ field, which depends on the density ρ of matter through the maximization of eq. (3.1).

This approximation to minimizing the total energy neglects the energy of the gradi-

ent terms in the field. Since the field must go to zero far from the source, the gradient

energy outside the object may not be negligible. A second condition for the validity of the

approximation is

φmax < φY (R). (3.3)

with φY (R) ≈ βMe−mR

4πR the Yukawa potential at the surface, and M is the total mass of

the source. This condition ensures that, as ε → 0, we recover the Yukawa case.

Maximization of (3.1) determines the overall strength of the field produced by a source

with a thin shell. When

ε À
(

m3

βρ

)2

,

the mass term in V (φ) is negligible, and φmax is given by

φmax ≈
(

βρ

ε

)1/3

. (3.4)

Substitution of eq. (3.4) into the thin shell conditions (3.2) and (3.3) shows that the

earth has a thin shell for αε & 10−65.

3.2 Near surface behavior of a thin-shell object

For a spherical source, static solutions to (2.5) obey the ODE

φ′′(r) +
2

r
φ′(r) = m2φ + εφ3 − βρ =

dV

dφ
. (3.5)

Exterior to a spherical object we can get a good understanding of the solutions to (3.5) by

considering the relative importance of the nonlinear term. Since this term increases meff ,

we expect φ to decay fast when (3.5) is nonlinear, and to approximate Yukawa behavior

when the nonlinear term is unimportant. Let us define

η2 ≡ |εφ3|
|m2φ| + |φ′/r| , (3.6)

as a measure of the importance of nonlinearity in (3.5).
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When the equation is sufficiently linear, the solution has Yukawa behavior, φ′
lin ≈

−(m + 1/r)φlin. For r ¿ 1/m, we can self-consistently approximate

φlin ∼ ηlin√
εr

, (3.7)

setting ηlin ≤ 1/5. If we attempted to apply this approximation right at the surface of a

thin shell object, it would break down:

ηsurf ∼ φmax

√
εR ∼ meffR√

3
>

meff`√
3

>
1√
3
, (3.8)

by (3.2). So the conditions for a thin shell guarantee the nonlinear term is important near

the surface.

When the equation is sufficiently nonlinear, we can neglect the terms in the denom-

inator of eq. (3.6). The l.h.s. of (3.8) grows like (αε)1/6, so this is justified near earth’s

surface for most of our parameter space. Then our differential equation is

φ′′ ∼ εφ3,

which would be exact for planar geometry and m = 0. This equation has the monotonically

decaying or growing solutions

φ ∼ 1

±
√

ε
2
r + C

.

Matching to φmax at r = R gives

φ ∼ ± 1
√

ε
2
(r − R ±

√

2
ε φ

−1
max)

. (3.9)

So φ decays extemely fast, behaving like it has a pole
√

6 of a thin shell distance (i.e., m−1
eff )

inside the surface. Eventually, η falls to a value where the linear terms become important.

Neglecting m and using (3.9) in (3.6), one finds this happens at

rlin ∼ R −
√

6/meff

1 − 2/η2
,

For a large thin shelled object, rlin is of order R. Even though φmax increases with αε, the

shell thickness decreases, and rlin is insensitive to αε. For instance, as long as αε & 10−52,

meff of the earth is large enough that rlin is independent of αε to 1%.

Clearly, φ must fall fast as the shell gets thin. One may wonder if this makes the

chameleon force easy to detect near the earth’s surface. To answer this, we also use

eq. (3.9) to derive the field gradient near the surface:

φ′(R) ∼ − (3βM)1/3

ε1/6(4π)1/3R2
∝ (α/ε)1/6

This shows that even though φ′(RE)/φ(RE) grows with ε, φmax falls quickly enough so the

surface force always decreases with ε. Here M is the total mass of the source.
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The picture we have derived here is that φ decays very fast until the linear terms in the

ODE become important, then takes on Yukawa behavior. The net effect of ε 6= 0 weakens

the effective coupling β. All these results are confirmed by numerical simulations, although

the location of linearization is not totally clear-cut.1

3.3 Effective coupling approximation

The results of the previous section show that for a sufficiently massive thin shelled object

coupled to a chameleon field, at a distance r which is large compared to the radius of the

object but smaller than 1/m, the field strength is given by

φlin ≈ c

r
√

ε
, (3.10)

where c is a number of order 1. We can show that this result is always a good approximation

for a spherical source whenever

ε &
1

αM2GN
. (3.11)

and m is sufficiently small, and for any geometry at a distance which is much larger than

the size of the source and shorter than 1/m. Outside the source, for ε = 0 the approximate

solution to the field equations is

φY (r) = β
√

GNM
e−mr

r
. (3.12)

For nonzero ε, φ will be smaller, declining at least as quickly as a Yukawa field with mass

of order meff . Thus if φ is larger than φlin, φ will fall exponentially faster than 1/r until it

decreases to a value of order φlin.

Note that the differential equation (3.5) is covariant under the transformation

φ → kφ, ε → ε/k2, β → kβ ,

where k is an arbitrary scaling factor, which is consistent with the result that φ scales as

ε−1/2.

Comparing φlin with the Yukawa field that would be produced for ε = 0 we see that

in comparing the chameleon field strength with a Yukawa potential, at a distance which is

large compared with the size of a source one should use the effective coupling

βeff ∼
√

4π

M
√

ε
. (3.13)

This approximation is good whenever the equations

m ¿ 1/R (3.14)

and (3.11) are satisfied.

1It is difficult to describe analytically the region between η ∼ 2, where linear terms become important,

and η ∼ 1/5, where they become the only important terms. Numerical solution of the equations for m = 0

shows that φ scales like φlin ∝ ε−1/2 instead of φmax ∝ ε−1/3, for r very near the surface. But the r for

which φ scales with ε−1/2 is smaller than the value of r for which φ decreases with r as 1/r.
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Note that this effective coupling is independent of β, and the effects of a chameleon

force are weaker than gravity for any object which is much more massive than the Planck

mass divided by
√

ε. Note also for any given object that the effective coupling depends

only on ε and the mass of the object.

Thus if we consider any given experimental test of the inverse square law involving

two sources of mass M1 and M2 whose separation is larger than their size, which bounds a

certain α and m for a Yukawa field, we conclude that for a chameleon field with the same

m we have a lower bound on ε which is

ε >
1

M1M2GNα
. (3.15)

Provided the inequality 3.15 is satisfied the chameleon is not constrained by the experiment

in question. Similar conclusions would apply to equivalence principle tests, provided α is

replaced by the product of α and the appropriate equivalence principle violating parameter.

4. Experimental constraints

This section derives the major constraints on chameleon forces from different experimental

searches for fifth forces. Again, these experiments generally put constraints on forces of the

form (2.7) for different length scales λ = 1/m. Our calculations of the modified constraints

for ε 6= 0 are summarized in figure 1.

Typically, a Yukawa force is constrained only for 1/m of order the characteristic lengths

in the experiment. If m is too large, a Yukawa force decays before it is detectable. If m is

too small, the Yukawa force appears to obey the inverse-square law. Here we consider how

ε 6= 0 modifies this behavior (always weakening the force, as discussed above). But we also

consider how a modification to GN might be detected by affecting different experimental

measurements of GN differently.

4.1 Lunar laser ranging

The Lunar Laser Ranging experiment [20] puts the tightest constraints of any experiment

on a Yukawa force, and the fact that it is loosened for extremely small values of ε is our

most prominent result. For this reason, we chose m ≈ 1/REarth−Moon, the most constrained

value of m when ε = 0.

The experiment carefully measures irregularities in the moon’s orbit by reflecting a

laser beam from a reflector on the moon. This produces a constraint on Yukawa forces of

α . 10−11 for m ≈ 1/REarth−Moon [3]. Let us apply the effective coupling approximation

derived in section 3.3. We need to determine αeff , the strength of the chameleon force on

the earth-moon system relative to the strength of a Yukawa (ε = 0) force with α = 1.

We start by assuming both the earth (ε & 10−65/α) and moon (ε & 10−61/α) have

thin shells. The chameleon force is given by

~FC = ~∇REarth−Moon

∫

d3x
1

2
(~∇φ)2 + V (φ), (4.1)

– 7 –
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where φ is a static solution to eq. (2.5) with both the earth and moon as sources. As we

saw above, a thin-shell source produces a field that falls to φlin in a distance roughly ∼
Rsource/(1−2/η2

lin) independent of ε. Farther from either source, the behavior is essentially

linear, so φ ≈ φEarth + φMoon with φEarth and φMoon single-source solutions, since the

nonlinear regions do not overlap. Since most of the overlap occurs in the linear region, one

can by definition neglect the εφ3 term in V (φ), and the force too behaves linearly. So it is

separately proportional to βeff,i, the single source apparent strength of each field:

αeff =
βeff,Eβeff,M

4πGN
.

After reaching φlin, the single-source field has the Yukawa form, so

βeff,i = β
φlin

φY (rlin)
∼ 4πηlin√

εMi
,

where we have used e−mrlin ∼ 1. Thus

αeff ≈ 4πη2
lin

εGNMEMM
(4.2)

is the effective strength of the chameleon force (the ε → 0 limit clearly cannot be taken

once a thin shell approximation is used). Our discussion above anticipates that αeff is

insensitive to α, since the large r values of the field are insensitive to the surface value,

which by eq. (3.4) is φmax ∝ α1/6. 2 Note, though, that the thin-shell conditions guarantee

αeff < α. Eq. (3.3) in spherical geometry gives

ε > π3

(

4

βM

)2

,

hence

αeff < α
η2
lin

π

min(M1,M2)

max(M1,M2)
< α/100.

Then the LLR constraint αeff < 10−11 gives:

ε >
4π1011η2

lin

GNMEMM
∼ 5 · 10−53, αε & 10−61. (4.3)

when both sources have thin shells.

For αε intermediate between the earth’s and moon’s thin shell values, we treat the

moon as a point test mass. Then

αeff =
ββeff,E

4πGN
=

√

α

4πGN
βeff,E < 10−11,

so

α < ε
1044

(4πη)2
∼ ε(2 · 1043), 10−65 . αε . 10−61. (4.4)

As αε lowers to the value for which the earth acquires a thick shell, this constraint neatly

approaches 10−11, the ε = 0 constraint.

2A 10-fold rescaling of the surface value, equivalent to a rescaling of β by 103 or α by 106, barely affects

the later field.
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4.2 Helioseismology

One way to phrase the gravitational inverse-square law is to claim that the gravitational

constant GN is indeed a constant. So comparisons of measurements of GN with objects of

greatly different size can constrain our model if the chameleon causes an apparent modi-

fication of GN . In section 4.3, we will consider the constraints from comparing terrestrial

Cavendish experiments, which involve source masses from ∼ 10 kg to ∼ 104 kg. But first,

we compare this whole group of experiments with GN determined by data from the sun,

which has a mass ∼ 1030 kg.

The standard solar model balances pressure gradients against gravitation, fixing the

gravitational force between volume elements when the pressure is known. Solar neutrino

data constrains the temperature, and thus the gas pressure, to about 1% [21]. This con-

strains GN , and not just the product MGN , to 1%, in agreement with lab-based Cavendish

experiments.

From eqs. (3.3) and (3.2), we find that the sun has a thin shell for αε & 10−75. A

thin shell means that φ is constant inside the source (or varies quasi-statically for slowly

changing density), so the chameleon force is then negligible in the sun’s interior. (Strictly

speaking, for thin shell we should compare the effective mass to the length scale ` for

density variations, but we approximate by comparing to the solar radius). The largest-

scale Cavendish experiment has a thin shell for αε & 10−23.

In this and the following sections, we derive strict constraints and simplify our analyses

by assuming the chameleon force completely negligible in each experiment when the source

has a thin shell, and completely Yukawa when thin-shell fails. This simple picture is valid

except for αε near the endpoints of the thin shell regime, when η ≈ 1 and the nonlinear

and linear terms in the ODE are of the same order. Improving the approximation would

weaken the constraints in this regime, smoothing out their sharp edges.

In this regime the Cavendish experiments see a GN modification of relative strength

α, while the sun sees only gravity. Thus, we derive the constraint:

For 10−75 . αε . 10−23, α . 10−2 . (4.5)

4.3 Lab Cavendish experiments

The modern Cavendish experiments [22 – 32] involve a range of techniques, geometries,

and source masses from ∼ 10 kg to ∼ 104 kg. There is some disagreement among results,

and it is amusing to note that the chief outlier [23] differs from the accepted value by

the right sign to be explained by a chameleon. However, to derive the most stringent

constraints, we discount this outlier and assume the other experiments accurate to their

stated uncertainties. The experiment with the smallest source masses [31] used 4 stainless

steel spheres of mass 8 kg, giving a thin shell for αε & 10−17. The largest source mass

was [32] a pair of mercury tanks 7550 kg each, with a thin shell for αε & 10−23.

Then α must be such to make these two experiments agree within their fractional

uncertainties of 10−5:

For 10−23 . αε . 10−17, α . 10−5 . (4.6)

– 9 –
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4.4 Ocean and lake experiments

Zumberge et al. [33] measured g at varying depths in the ocean as a test of ISL and a

determination of GN . Their value agrees with lab Cavendish experiments to about 3 ·10−3.

Again, we expect no chameleon force in the ocean when the earth has a thin shell because

φ is quasi-static in the interior. This gives a constraint when the earth has a thin shell but

laboratory experiments do not:

For 10−65 . αε . 10−23, α . 3 · 10−3 . (4.7)

The lake experiments [4] use a lake as a source and typically find a value of GN that

agrees with lab values to about 10−3. This constraint is essentially subsumed by the ocean

experiment.

4.5 Tower gravity experiments

Several experiments [4] measured constraints over scales of a few hundred meters by de-

tecting deviations from an inverse-square falloff of g as one ascends a tower. This is the

case, near the surface of the earth, where the chameleon is strongest and falling fastest,

among all the experiments.

They observed limits on deviations of ∼ 10−7g = 7 · 10−17/RE , setting ~ = c = 1. For

the earth with a thin shell, we use our approximation eq. (3.9) to compare the acceleration

field a distance ∼ 102 m ∼ 10−4RE ≡ χRE above the surface to the expected ISL scaling:

β

∣

∣

∣

∣

φ′((1 + χ)RE) − φ′(RE)

(1 + χ)2

∣

∣

∣

∣

∼ β
√

ε/2R2
E

∣

∣

∣

∣

∣

1

(χ + ε−1/6
√

2( 4π
3βME

)1/3)2
− 1

(1 + χ)22ε−1/3( 4π
3βME

)2/3

∣

∣

∣

∣

∣

.
7 · 10−17

RE
. (4.8)

Substituting in numbers:

√

α

ε

∣

∣

∣

∣

1

(10−4 + (αε)−1/6(2.2 · 10−11))2
− 1

(εα)−1/3(5 · 10−22)

∣

∣

∣

∣

. 5 · 1024 (4.9)

For αε ¿ 10−40, the shell becomes much thicker than χRE, and the constraint approaches

α

∣

∣

∣

∣

1

(αε)1/6
− 1

2.2 · 10−11

∣

∣

∣

∣

. 107,

which becomes irrelevant for αε ∼ 10−64, just as thin shell breaks down. For αε À 10−40,

the first fraction in eq. (4.9) can be neglected, and α . 104ε1/5. For ε & 10−21, the overall

chameleon strength is small enough that the constraint weakens to α . 1.

– 10 –



J
H
E
P
0
8
(
2
0
0
6
)
0
0
2

4.6 Lab inverse-square law: Spero et al.

Some of the tightest lab constraints on Yukawa forces in the centimeter length scale come

from Spero et al. [34, 35]. This null experiment involved placing a 20 g test mass about

1.2 cm from the central axis of an Fe cylinder of inner radius rin = 3 cm and outer radius

rout = 4 cm. The experiment used a cancellation mass to cancel edge effects, so the force

should vanish inside the cylinder for inverse-square law. Spero et al. observed a torque

corresponding to an acceleration field less than about 3 · 10−12 m/s2.

As usual, our field becomes linear for a thick shell, so constraints are only different

from those on a Yukawa field when ε large enough to give a thin shell, but small enough

that the force is still detectable at the test mass position. The thin shell criterion (3.2)

gives √
3(βρ)1/3ε1/6 >

1

rout − rin

,

so the Yukawa constraints are modified when αε & 1.5 · 10−14. Notice that a large value of

ε is needed to reduce the shell distance to a centimeter.

The cylindrical geometry changes 2φ′/r in eq. (3.5) to φ′/r, but we neglect this term

anyway in our usual approximation (3.9) for very nonlinear fields.3 Then the acceleration

field at r = 1.2 cm is

βφ′(2rin/5) ∼
√

ε/2β

(
√

ε/2rin(1 − 2
5
) + ( ε

βρ )1/3)2
. aobs ≈ 1.1 · 10−29/rin

This gives the constraint

α

(ε1/6 + α−1/66.6 · 10−3)4
. ε1/3(2.5 · 106). (4.10)

This constraint equation can be solved numerically for α given ε satisfying thin shell. The

constraint would weaken even further for ε & 3 · 10−10, as the test mass acquired a thin

shell.

Note that eq. (4.10) depends sensitively on the position of the test mass. Changing

the position of the test mass would change the factor 2/5 in the first equation above,

which would introduce a factor changing the relative importance of the two terms in the

denominator of eq. (4.10). As the position of the test mass approached the inner wall,

the constraint would strengthen to α . ε1/5(4 · 10−2). However, to our knowledge no such

experiment has been performed.

4.7 Lab inverse-square law: Hoyle et al.

The University of Washington Eotwash group [36] put tight constraints on a Yukawa force

in the 100 micron range. The technique was to measure the torque on a torsion balance

pendulum produced between a pair of discs with holes bored in them. In this setup,

the “missing mass” of the holes is the attractor for any field obeying a linear differential

equation. But it is difficult to model such a problem for a nonlinear field.

3The validity of this approximation should extend rout−rin

1−η2/2
∼ a few cm, or most of the way inside the

cylinder. Numerical results confirm the approximation, at least to order of magnitude, about 80% of the

way from the wall to the axis.
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The basic premise of this null experiment is that the force between large parallel plates

is independent of separation for Newtonian gravity. The setup made use of three discs,

the lower two of which (7.8 mm and 1.8 mm thick Cu) were at a constant separation and

had the holes offset azimuthally by 18 degrees. The upper disc (2.0 mm thick Al) was at

a variable separation of 0.2 mm to 11 mm and acted as a torsion pendulum. Because the

two lower discs were azimuthally rotated, they largely canceled each other’s Newtonian

torques on the pendulum. But for a short-range force, only the upper disc would exert

torque on the pendulum. So we get to the core of the problem by calculating the separation

dependence of the force between parallel plates for the chameleon field.4

The chameleon force becomes short range when linearity fails, which happens roughly

when the source acquires a thin shell. The two lower discs were flush, so we can consider

them as a single attractor with holes partway through. Then the experiment measured

torque caused by the differential force from the parts of the attractor closer and farther

from the pendulum. For αε . 6 · 10−10, neither pendulum has a thin shell, and for

sufficiently small m we expect no ISL deviation in the experiment. For ε very large, we

expect the force to be negligible. For intermediate values of ε, we derive the constraints

by computing the ratio of the forces from the two attractor discs and comparing to the

Newtonian value of approximately 1 within the experimental sensitivity of about 1%.

For this planar one dimensional problem, our ODE becomes

φ′′(x) =
dV

dφ

with the origin chosen halfway between the plates. It follows from the differential equation

that the quantity

C ≡ φ′2 − 2V (φ) (4.11)

is independent of position, in analogy to conservation of energy in a 1-d mechanics problem.

The potential energy density in the field is given by

u = φ′2/2 + V (φ) = C/2 + 2V (φ).

Then the 1-dimensional chameleon “force” between plates is the derivative of total potential

energy with respect to separation:

FC = − dU

d(∆x)
= − d

d(∆x)

∫ ∆x/2

−∆x/2

udx = −1

2
(u(∆x/2) + u(−∆x/2)) −

∫ ∆x/2

−∆x/2

∂u

∂∆x
dx.

So far, this is exact, but integrating (4.11) and inverting for φ is an impractical way to

find FC . If we apply thin shell, φ(∆x/2) = φmax,Cu, φ(∆x/2) = φmax,Al, then u(±∆x/2)

depends on separation only through C/2. We further assume that, for our parameters, φ

does not change much from φmax. Then it is valid to approximate φ by a series solution to

second order:

φ ≈ φ0 + φ1x + φ2x
2 = φ0 +

(

φmax,Cu − φmax,Al

∆x

)

x +

(

ε

2
φ3

0 +
m2

2
φ0

)

x2

4Of course, the cancellation of torques was not exact at all separations, but there is more cancellation

for linear than for nonlinear fields.
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and match to the thin shell solution:

φmax,Cu + φmax,Al

2
∼

(

β

ε

)1/3
(

ρ
1/3

Cu + ρ
1/3

Al

2

)

≈ α1/6

ε1/3r0

≈ φ0 +

(

ε

8
φ3

0 +
m2

8
φ0

)

(∆x)2,

with r0 ≡ 0.1 mm. The last equality can be solved numerically for φ0 as a function of ε

and α. Then

C = (φ1 + 2φ2x)2 − 2V (φ0 + φ1x + φ2x
2)

gives us the constraints. We compare to the Newtonian 1-force

FN = −πGN

2
(ρ2t2 − ρ1t1)

2,

with ti the thickness of plate i, by comparing

FC(∆x) + FN

FC(∆x + tupper) + FN
,

with tupper = 1.8 mm, to 1.

We expect from (4.11) the ODE will become linear when V (φ) ∼ V (φmax) ¿ C. This

occurs for αε ¿ 4 · 10−4 for separations of 0.2 mm and αε ¿ 3 · 10−14 for separations of 10

mm. This latter inequality gives us some idea of the constraints since a linearized field is

likely to behave like the Newtonian case.

Indeed, numerical simulations show that α . 7 ·10−11/ε for ε . 10−8. For larger ε, the

chameleon force weakens and the constraints become less relevant. For ε = 10−6, we have

α . 0.1, and for ε = 10−4, α . 1. Beyond this, the parabolic approximation breaks down,

but it is safe to assume that α & 1 is allowed.

Hoyle et al. also did a calibration using metal spheres of radii 4 mm and 2.5 cm,

separated by 14 cm. For α . 10−15/ε, all the calibration spheres would have thick shells,

so the measured force is 1 + α times the gravitational force for the calibration spheres

as well as for the pendula. There is therefore no constraint on α in this regime. For

10−15 . αε . 6 ·10−10, the larger spheres but not the pendula would have a thin shell. The

chameleon then contributes more strongly to the pendulum force than to the calibration

force. Since the precision is about 1% and no deviation is observed then α must be less

than 10−2 in this regime.

4.8 Lab inverse-square law: Hoskins et al.

Hoskins et al. [35] put constraints on the ISL at the 10 cm length scale. They compared

the force on a torsion pendulum from a 7 kg “far” mass at about 105 cm separation to

that from a “near” mass at 5 cm and found α . 10−3. However, their experiment does not

appear to constrain a chameleon force. Since both masses were copper, they would have

radii about 5 cm and 1 cm respectively. But because each mass was located at least ∼ 5

radii from the torsion pendulum, one would expect that the field from each mass at the

torsion pendulum would always be linearized, either because each source had a thick shell

or because the field from a thin shell source had already decayed past φlin. Since we use

small m, a linear φ field would look like Newtonian gravity in this experiment. We have

already considered modification to GN in section 4.3.
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Figure 1: Plot of allowed region for the coupling α, as a function of the nonlinear term ε, with the

mass of the field set to the inverse earth-moon distance. The constraints do not change appreciably

for massless or for somewhat more massive fields, except in the region ε < 10−50. This entire region

is forbidden by LLR when ε=0.

4.9 Planetary

Planetary constraints [4] are negligible at distance scales large compared to 1/m even for

ε = 0, and as we have noted, the force always weakens with ε. If we considered the

1/m ≈AU case, the discussion would parallel that for LLR.

4.10 Free fall

It is interesting to consider that, in the regime where two objects both have thin shells,

the chameleon force behaves like a Yukawa interaction with αeff independent of α (see

sections 3.3 and 4.1). This is true when the separation is larger than rlin ∼ Rsource/(1 −
2/η2

lin). If we consider the regime where satellites have a thin shell (αε & 10−18 for a 10 kg

metal sphere), then satellites at heights greater than ∼ 5RE would experience a fifth force

with αeff given by eq. (4.2) dependent on mass, affecting their periodicity.

From the discussion in section 4.1, αeff would be down from α by a factor Msat/ME ∼
10−20 even for the minimal value of ε which gives a thin shell, and would decrease with ε.

So such a fifth force would be negligible.
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5. Conclusion

Currently, there is no evidence for deviations from Newtonian gravity, and this concordance

is generally interpreted in terms of constraints on new forces. Usually, the equations for

any new force field are assumed to be linear. In this work, we have examined how such

constraints would be reinterpreted in the presence of a nonlinear, “chameleon” force. We

note that some constraints on the strength of such a force become much weaker, even for

extremely small nonlinear terms, and there is room to hide a new long range force whose

effects could be as large as 1% of gravity between small objects.

Although currently there is no compelling outlier, it is worth emphasizing that for

chameleon forces, the possibility arises for different experiments to produce inconsistent

results, when interpreted in terms of the Yukawa framework. Therefore outlying results on

searches for new forces should not automatically be dismissed without further investigation.
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